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We introduce three new tools for the study of term rewriting systems.
Derived pairs of a rewrite rule generalize the well-known idea of "critical
pairs” introduced by Knuth and Bendix (1970) in their development of a method of
proving the confluence property. The overlap closure of a set of rules is a set
of rules that corresponds to a subset of the transitive closure of the rewriting
relation. Its construction is based on the use of derived pairs obtained from
superpositions of the right hand side of one rule with the left hand side of
another, This process is closely related to the Knuth-Bendix process, which uses
critical pairs for gemerating new rules in an attempt to achieve confluence. We
use the overlap closure in proving - or disproving — that a rewriting relation
is uwniformly tcrninatin;.l It thus provides an interesting dual method to the
Knuth-Bendix process, in which the validity of the critical pair test for con- b
fluence deponds upon uniform termination. The combination of uniform termina-
tion and confluence provides a decision procedure for the theory of the equa-
tions corresponding to the original rules.

In the study of derived pairs and overlap closures we found it useful to
devise a new way of representing rewrite runles and sequences of rewrites using
what we call rewrite dominoes and "rewrite domino layouts”. We will introduce
this representation and use it in presenting the proofs of our main results
about the overlap closure. We believe that this representation also will be
useful in the study of other areas of rewrite rule theory.

Like the Knuth-Bendix process, the overlap closure process may fail to ter-
minate (that is, it may continue to gemerate new rules indefinitely). In fact,
when the original rules are uniformly terminating, it will usually happen that
overlap closure gemeration is nonterminating. In this case, the overlap closure
process does not by itself yield a proof of uniform termination, but it may be
useful as an aid in applying other known methods of proving unitorm termination
[see Huet and Oppen, 1980]. It can also be used in proving what we call "res-
tricted termination,” i.e., termination for all terms up to a given size. Some
applications of restricted termination are discussed in [Guttag, Kapur and
Musser, 1981].

Perhaps more important is the case where the original rules are not uni-
formly terminating. One would often like to be able to detect this situation
quickly, e.g., in order to avoid wasting time attempting to construct a proof of
uniform termination. We show that under some reasonable restrictions on the
form of rewrite rules, the overlap closure construction provides such a test.

1. more commonly called finjtely terminating or noetherian. ]
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I.e., we show that if the rules are globally fisnite (that is to say, the number
of different terms to which any term cam be rewrittem is finite) and every rule
is right-linear or every rule is left-linear, the overlap closure construction
can be used to effectively search for cycles in the rewritimg relation. (That

| it does so "quickly” emough tc be useful is a claim for which we have limited

1 empirical evidence, as discussed in the Comclusion section).
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In the case of a rewriting system R = {(1i - r )l. the derived pairs obtained
from the pairs (ti.li) and (lj.rj)) are called rit;cu pairs.

1. The notstion [t with u st i] stands for the term obtained

For the most part we use stendard definitions and terminology for term
rewriting systems from Huet (1980) and Huet and Oppen (1980).

exceptions, such as "uniform termination” for "finite terminatiom,”
nal form” for “mormal form.”

There are a few

and "termi-
In [Guttag, Kapur, and Musser, 1981], the reader
will find a thorough discussion of this background material. Here we confine

ourselves mainly to the definitions of "derived pairs,” a gemeralization of the
Knuth and Bendix’s notion of "critical pairs,” snd of "overlap closure.”

Two terms are said to overlap if ome is unifiable with a nonvariable sub-
term of the other. If s and t overlap, we define their superposition: either

a) s unifies with a nonvariable subterm t’ of t, by the most general unif-
ier (m.g.v.) O, in which case O0(t) is called a superposition of s and t; or

b) a nonvariable subterm s’ of s unifies with t, by m.g.u. 0, in which case
0(s) is called a superposition of s and t.

Now consider ordered pairs of terms (r,s) and (t,u) such that s and t over-
lap, as above. (If the varisbles of t must be rensmed, the same renaming must
be spplied to u.) Then along with the superposition ©(t) or O(s) we obtain the
derived pair of terms, {p,q>, where

a) if s unifies with a nonvariable subterm t/i by m.g.u. O,
p=[6(t) with () at i1}
q=8(u);

b) if a nonvariable subterm s/i unifies with t by m.g.u. 0,
p=0(r)

q=[0(s) with O(u) at i].

from t by replacing the subterm at position i by u, A ”"sud-
term position” and "corresponding subterm” within a term is a
finite sequence of nonnegative integers separated by ".” and
2 related term determined as follows: to the null sequence
(denoted <)) corresponds the entire term. If f(t seeest ) is
the subterm at position i then the subterm at pos}tion i. j is

tj. We write t/i for the subterm at position i within term
t

‘ i e s
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Consider, for example, obtaining a critical pair from the rewrjite rules:

x-l ® x—e

(x oy') o 2’x" o (y' ®» 2')

We begin by comstructing the ordered pairs (e, x_1ox) and

((x* oy’') oz’, x' o (y" » 2')). Now x-l ® x can be unified with x’ o y’ using
the substitution © = [x /x*, x/y']. This leads to the derived pair

e @ z'.x-l e (x @ 2')) which is a critical pair of the rules.

Using derived pairs, the overlap closure of R, written OC(R), is dofined
inductively as follows:

s. Every rule r = s in R is also in OC(R).

b. VWhenever r —> s and t — u are in OC(R), every derived pair <p,q> of (r,s) s
sad (t,u) is in OC(R) (as p = gq).

¢. No other rules are ia OC(R).

“Examples of overlap closures:”

i. Let R = {f(x) = g(x)), thea OC(R) = R.

5 ii. Let R = {f(x) 5 g(h(x)), b(x) —> k(x)}, them OC(R) = R
U {f(x) = g(x(x))]}.

iii. Let R = {x 9o (y®o2) = (x®y) o 2], then from the superposition
(x 9 (2 ®y’)) @ 2’ we obtain the rule

Alavaaiy

z0((z*oy)eosz') 2 ((zex)oy’) o3’

and from the superposition (x o ((x' o y’') @ 2°) we obdtain

i
?% so(x*eol(yes’)) D (z0(z*0y')) os'.
y

These rules thean lead to further rules, and OC(R) is infinite.
N iv. Let R = {f(x) - g(x), g(h(x)) = £(h(x))}. Then OC(R) consists of R and
}' the reflexive rules f(h(x)) = f(h(x)) and g(h(x)) — g(h(x)).

The overlap closure OC(R) has a rich structure since the overlap closure
construction preserves some properties of a rewriting system R, The following
theorem shows that every derived pair of two rewrite rules is also s rewrite
rule, implying that the overlap closure OC(R) is a rewriting system.
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2.1. Theorem. If r,s,t,u are terms such that (r,s) and (t,u) are rewrite
rules, then every derived pair (p,q> of (r,s) and (t,u) is also a rewrite rule.

Proof. Ome just has to verify that for each case in the definition of derived
pair that every variable that occurs in q occurs also in p. 0

Let us consider some other properties, based on the properties of its
rules, of a rewriting system R

A term is said to be linmear if no variable occurs in it more than omce. A
rewrite rule is left-linear if its left term is linear, right-linear if its
right term is linear, and linear if its left and right terms are linear.

A rewriting system is called left-linear, right-linear, or linear, based on
whoether each of its rules is left—linear, right-linear, or linear, respectively.
The following theorem implies that the overlap closure OC(R) of a right-linear
(left-linear, linear) R is also right-linear (left-linear, linear).

2.2. Theorem. If r—s and t—u are two right linear rules with disjoint vari-
able sets, then each of their derived pairs, <p, q> is also right linear.

Proof. There are three cases:
(1) s unifies with the subterm t/i of t by their m.g.u. .

The corresponding derived pair <{p, q)> has

p = [0(t) with O6(r) at 1]

g = 0(u)

Since s is linear, by Lemma 1 in the Appendix, substitutions for any two dis-~
tinct variables in t/i in © do not have a common variable. The variables in t
other than the omes in t/i do not play any role. So O(u) is linear.

(i1) the subterm s/i of s unifies with t by their m.g.u. O,

The corresponding derived pair <{p, q> has

p = 0(r)

L U
It




q = [0(s) with O(u) at i]

Since s/i is linear, by Lemma 1 in the Appendix, substitutions for any two dis-
tinct variables in t in @ do not have a common variable. So, O(s) and 8(u) are
linear, and q¢ is thus linear.

(iii) if subterms of s do not unify with t, or s does not unify with subterms of
t, then there sre no derived pairs of r—>s and t—u. [

By a similar argument, it can also be proved that every derived pair of two left
linear rules is left linear.

The name "overlap closure” comes from the fact that the rules of OC(R) are
& subset of the tramsitive closure of the rewriting relation of R:

2.3, Lemma. If p = q is in OC(R) then p - * q (using R).

Proof. By induction on the construction of p = q in OC(R). The basis of the
induction is the case that p — q is included in OC(R) by virtue of being a rule
of R, Then obviously p = q holds. If (p — q) is included in OC(R) by being
a derived pair of (r,s) and (t,u) then by the inductiom hypothesis for the two
rules (r,s) and (t,u), we have r = Ysamdato " u, By the definition of
derived pair and the transitivity of -%+. we then have p = + g. O

2.4. Corollary. If OC(R) contains a reflexive rule, t = t, ther the rewriting
relation of R has a cycle.

Proof. Immediate from the sbove lemms. [J

We wounld like to have the converse of this corollary, that if the rewriting
relation of R has a cycle, then OC(R) contains s reflexive rule. This would
permit searching for cycles by incrementally computing OC(R), looking for a re-
flexive rule., VWhile we have not been able to prove this in full generality, we
will present in the next section a restricted version and its proof. The proof
is not easy, because the overlap closure of R is in general much smaller than
the full transitive closure of R. It is this small size, relative to the tran-
sitive closure, however, that makes it feasible to use the overlap closure ss
the basis of an approach to proving uniform terminstion or, st least, a useful
notion of "restricted termination,” discussed in [Guttag, Kapur, and Musser,
19811].




In order to be sble to prove the major result about the overlap closure, we
need to be able to deal precisely with the various cases of overlap between suc-
cossive applications of rewrite rules in a rewrite sequence. We have found it
useful to introduce a new representation of rewriting that helps to make such
cases clear.

The domino gepresentation (or rewrite domino) of a rewrite rule is a rec-
tangle divided into left and right halves in which are inscribed tree represen-
tations of the left and right terms of the rule. Function symbols in the terms
are represented by labelled circles in the trees, Variable symbols are
represented by labeled rectangles, called "variable boxes.” For examples of some
rules and their corresponding rewrite dominoes, see Figure 1.

For each kind of domino (that is, each domino corresponding to a specific
rule), we assume there is an infinite stock of dominoes of that kind with their
variable rectangles filled in with all possible terms. For each such domino, we
also assume an infinite number of copies are available in the stock.

A sequence of rewrites can be represented by a domino layout, which is a
two~dimensional arrangement of dominoes that obeys the rules of matching
corresponding to those of term rewriting (Section 2). Before giving the formal
definition of a layout, we refer the reader to an example of a rewrite sequence
using the rules given in Figure 1 and its corresponding domino layout as shown
in Figure 2. Another example is in Figure 3, and the two layouts in Figures 2
and 3 could be concatenmated to give a single longer layout.

We draw trees oriented sideways with the root at the left, and we will use
nested triangles to represent trees schematically. We define a unit layout from
t to w to be a horizontal arrangement of s tree t, a domino with trees u and v,
snd another tree w,

q 14 <

in which




RULE

Jx.800,. 7))~ e(f(x.5),2)

2. SixfOn.o) = S(f(x.y)Y

3.1 fix.k()—=x

hix)=i(x}

h(x)—> j(x)

Si(x).jtx))—= 1 (x)

DOMINO

X
S
y
S
4
X
) =1
™ X
Jj
IX

Figure 1. A set of rewrite rules and their corresponding rewrite dominoes.
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1. at some position, i, in t there is a subtree t' that is identical to uw, ig- %
noring the variable boxes that appear in wu;
3 2. the roots of t’ and u are horizontally aligned;
§ 3. w is the tree [t with v at i] and the roots of t and w are horizontally
' aligned.

e

A layout from t to v is defined as

1. a unit layout from t to v; or
2, the concatenation of a layout from t to u with a layout from u to v, with
both copies of u dropped from the arrangement: or
3. any arrangement obtained from a layout by translsting horizontally any dom-
ino, as long as no other domino or end tree is overlaid or crossed (this
: allows compaction of a layout by placing one domino above another when they
. match disjoint subterms).

The examples in Figures 2 and 3 illustrate a number of observations we can
make about this representation of rewriting:

1. In a domino layout there is no distinction between different orders of
rewriting when the rules are being applied to disjoint subterms; e.g., the
layout in Figure 3 would not be different if rule 5 haéd been applied before

: rule 4 or before rule 3. One can think of these rules being applied in

= parallel, since the order of application is always immaterial in this case.
The layout representation just makes this property especially evident.

2. To the property that "the rightmost term of a rewrite sequence is terminal”
corresponds the property that "there is no way to play a domino on the lay-
out” (formally, there is no way to concatemste a unit layout onto the lay- ;

X out). The layout is said to be blocked. (The layout im Figure 3 is i

blocked.)

:, 3. Thus the rules have the uniform termination property if and only if every

- possible layout eventually is blocked. Equivaleatly, there are no infimite

Lt ! layouts.

LK Kol vl SRR

-“, Our purpose with this represeantation of rewriting is to provide s conceptu-

al tool for finding and presenting proofs of new results about term rewriting

_ systems., The first result we will prove with the aid of rewrite dominoes is onme

;}-f that will allow us to speed up the search for cycles by comsidering omnly those

sequences of rewrites in which a "major rewrite” ocours, v

A rewrite to - tl is called a msjor rewrite if it is by application of a
rule, t = u, to the entire term t ; i.e., for some substitution O, 6(t) = t
and 9 (u) = ty. Vhen only a proper subterm of t, is matched, tg D ¢, is called

» s sinor rewrite.

1




In a layout, a domino is called a major domino (of the layout) if it
4 represoents a major rewrite, and a minor domino otherwise. Pictorially, major
; dominoes are those that span the width of the layout.

«_-4 - S

A major cvcle is & cycle in which at least one of the rewrites is major.

3.1. Theorenm.

If a rewriting relation has a cycle, it has a major cycle.

Proof. Let us define the corridor of s domino in a layout to be the horizontal
strip across the layout determined by the position and width of the domino:

Any two corridors in a layout sre either disjoint or ome is contained in
the other, Therefore, we can find s corridor that is spanned by & domino and
which contains a layout as follows: start with any leftmost domino and follow
its corridor to the right: whenever a domino is encountered that doesn’'t lie in

. the coxridor. adopt its corridor. VWhen we reach the right end, we have s corri-
3 dor containing a layout including a domino that is major with respect to it. If

the whole layount is cyclic, the identified layout will be also, and will
represent & major cycle. [

! Ve now want to define some terminology and some manipulations of layouts that
‘; will be useful in proving theorems about the overlap closure of a set of rules.
o Consider an adjacent pair of dominoes in a layout. Let t and u be the trees on

'd the adjacent halves, where a subtree t’ of t is identical to u (possibly
N t’ = t):

Q OR @]

If either of t’ or u is contained entirely withia a variable box, i.e., the
B match is not between two mnonvariable subterms, we ssy that the pair of dominoes

: Cr e e~ -
A - Doan IR R <o,
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is weakly matched, and otherwise that it is strongly matched.
Examples. In Figure 3, the domino pair

is weakly matched. Similarly the pair

that appears in the concatenation of the layonts of Figures 2 and 3 is weakly
matched, while all the other adjacent pairs are stromgly matched.

Now suppose we have two weakly matched dominoes, as in Figure 4a, where t'
is contained in the x variable box. If the (s,t) domino is right-linear (i.e.,
t is linear), then the pair of dominoes can be transposed as follows: remove the
(u,v) domino from the layout and move the (s,t) domino to the right, so that
copies of the (u,v) domino can be inserted to the left of the (s,t) domimno, onme
adjacent to each x box in s (see Figure 4b). Then the resulting configuration
is still a layout, (the dominoes all match, using the same set of rules) with
the same end trees. This is the case also when a symmetric kind of transposi-
tion is performed on the layout in Figure 5a, producing the layout in Figure 50,
where we assume that the (u,v) domino is left-limear.

Such transpositions cannot necessarily be performed on strongly matched
dominoes, but we will define a different kind of manipulation for this case. o
Strong matching corresponds to the concept of overlapping in the definition of
derived pairs: 1if (r,s) and (t,u) are rules that have a derived pair <p,q>.
then the dominoes corresponding to (r,s) and (t,u) can be placed in a layout so
that they are strongly matched. The layout configuration shows just where the
strong match occurs and identifies a poteatial derived pair.
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Suppose now that instead of our stock of dominoes corresponding to a given
rule set R, we have a stock corresponding to OC(R), the overlap closure of R.
Then for any stromgly mstched pair of dominoes in a layout there is a domino in
our stock which corresponds to a derived pair gemerated by the matching pair. 3
By Lemma 3 proved in the Appondix, we can replace the strongly matched pair in
the layout by the "derived pair domino” thus identified, and the result will
still be a layout with the same end trees.

We are now in a position to prove:

3.2. Theorem. Suppose th- rewriting relation of R is globally finite and every
rule &4 R is right-linear. If the rewriting relstionm of R has a cycle, OC(R)
contains a reflexive rule.

Proof. (By comstruction.) Let
(* R N TR I

be & given cycle. Corresponding to (®) is a cyclic domino layout

C1C]
S~ =

)

where the dominoes correspond to rules of R. Im fact since each of these rules
is also in OC(R), we may take this layout as a layout of dominoes corresponding
to rules of OC(R). Ve will show how to manipulate this layout to a form that
shows there is & reflexive rule t — t in OC(R).

Weo desoribe the manipulations as an algorithm operating on the cyclic lay-
out (**),

Step 1. [Extract major cycle.] As in the proof of Theorem 5.1, extract from
(*¢) a sublayout representing s major cycle, making it the layout subject to the
following steps. Also replace to with its subterm matched by the layout.

N

Step 2. [Push major dominos to right end.] MNanipulate the layout to a fora im
which all of the major dominoes are together at the right end, by means of tran-
spositions or replacements by derived pair dominoes: whemever D is a major domi-
no and E is s minor domino adjaceat to D on the right
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either D and E are weakly matohed, in which case they can be transposed, or they
are strongly matched, in which case they can be replaced by the derived pair

domino they define - which is a major domino. This derived pair domino is also
right linear, as Lemma 1 in the Appendix shows.

Step 3. [Look for cycle among major dominoes.] There is novw a momempty sequence
of major dominoes D1 seces D- at the right end of the layout:

58 D] ++s |D, q

These dominoes can only be strongly matched — except for the case where the
right-hand side of Di is just a variable, but shortly we will show that such a
possibility can be ruled out. If there is some contiguous subsequence
Di sece Dj that forms a cyclic layout

4E - P4

then, since there can only be strong matches, these dominoes can be combined by
J — 1 + 1 replacements into s single domino D that forms a coyclic layout:

Gl g
Let D represent (p,q). Then there is a substitution 6 such that u, = O(p) and

0(q) = vy i.e., O unifies p and q. Furthermore, a derived pair of (p,q) and

(p.q) is the reflexive rule (6(p), 0(q)). Since this is in OC(R), we terminate
the algorithm.

Step 4. [Duplicate.] If no such subsequence exists, construct a copy of the
layout adjacent to it and return to Step 2 with the resulting layout:

1‘!’ EEEJ Eg D,)|see|D, EgE] Eg D] eee |D, <::g

That concludes the statement of the algorithm., Before comsidering the question
of termination of the algorithm, we dispense with the detail mentioned in
Step 3: the case of adjacent major dominoes D and | where the right term u of D

e+ o o e b iR 44 PS¢
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is just a variable. We can assume the left term t of D is not just a variable
(if it were then it would have to be the same variable as u and we would slready
have a reflexive rule). Simce the layout is cyclic, if we drop D from the lay-
out, we obtain a layout that has as its right end term a proper subterm idemti-
‘ cal to the left end term. From this we conclude that the term rewriting rela-
g -~ tion is not globally finite, contrary to assumption. This contradiction rules
out the case under disoussion.

‘ It is obvious that each step of this algorithm is effective and terminat-
' ing. Overall termination is guaranteed by the following facts:

a. At the kX th execution of Step 2, the number of major dominoces, m, at the
right oend is at least 2k.

; b. Let to [kl denote the term to the left of D1 in the layout at the k th exe-
cntion of Step 3. Since each t [k] is derived from to and the rewriting
2 relation is .lgbnlly finite, there are only finitely many distinct possi-
bilities for to[kl. By a), then, there is one such term for which arbi-
trarily long layouts of major dominoes exist. Again by global finitenmess,
these layouts cannot all continue without producing a term, L that is a
duplicate of some term previously obtaimed in the layout.

Since the algorithm always termisates, and does so with a reflexive rule in
OC(R), this proves the theorem. [)

The corresponding theorem obtaimed by replacing "right-linear” by "left- i
linear™ can also be proved in a similar manner. Combining these theorems with :
Corollary 4.3, we have:

3.3. sorem., Suppose the rewriting relation of R is globally finite and every
rule in R is right-linear or every rule in R is left—linear., Then the rewriting
relation of R is uniformly termimating if and only if OC(R) contains no reflex-
ive rule.

Some applications of this theorem are explored in [Guttag, Kepur, and Musser,
1981]

Recently, Dershowits (1981) has propossed a "forward chain” comstruction for
revwriting systems and proved that a right-linear rewriting system is unitoraly
terminating if and only if it has no infinite forward chains. However, for
left~linear systems the analogous result requires that the left-hand sides of
the rules be nonoverlapping, a problem that we had independently encountered
when considering the forward ohajm construction and a similar backward chain
construotion. Ve were thus led to imvent the overlap closare coastructioa., The

;o — —,1- - ‘;M
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following example from Dershowitz (1981) illustrates the advantage of the over-

lap closure construwction over forward chains. Using the forward chain construc~

tion, it is sot possible to determine the nontermination of this left-—linear
revrite system, as poiated owt by Dershowitz. The rewriting system is

£(a(), (), x) - £(x, x. b())
b() = a().

These rules have only two forward chains, both fimite:

f(.()a b()ox)é f(x. X, »()) # f(x, X, .())o and b( ) é l()t
but we cansnot zomclude anything about the termination of the rules because they

are not right-linear and, although they are left—linear, the left-hand sides are

overlapping. But in the overlap closure comstruction, the rules have a derived
pair rule

£{o(), b(), x) = £(x, x, b()),

which, vhen overlapped with itself, gives the reflexive rule

£(6(), 80, v0)) = £(6(), b(), b() )),

as 8 dorived pair, proving that the rules are nonterminating.
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4. CONCLUSION

Ve have discussed two ways to make use of finite subsets of the overlap
closure: proving restricted termination and disproving uniform termination. Ve
have oxplored, without much success, using such finite subsets as parts of
proofs of uniform termination. We conjecture that for certain classes of term
rewriting systems it should be possible to compute a bound, n, such that if s
cycle exists, there exists a cycle in which every term is of size n or less.

For such classes, the overlap closure would provide s decision procedure for un-
iform terminmation.

Another open question about the gemerality of the overlap closure comstruc-
tion is whether the assumption of left-limearity or right-linearity is neces-
sary. Although we have not been able to find proofs of our results without this
assumption, we have also been unable to comstruct a counterexample. In any
case, as discussed adove, the overlap closure construction is more general than
either forward or backward chain constructions,

For the class of term rewriting systems to which it may be applied, con-
structing the overlap closure is as useful as comstructing the complete transi-
tive closure. Furthermore, using the overlap closure to show restricted termi-
nation or the absence of uniform termination will always involve computing fewer
terms than would using the transitive closure. We do not yet have much empiri-
cal or analytical evidence as to the absolute efficiency of using the overlap
closure for these purposes. The key question is how many terms must be examined
in order to demonstrate that no cycle is possible for terms of up to size n,

The few examples we have tried, using a preliminary implementation, we have
found encouraging.

The basic idea of conducting a search for repeated terms (cycles) or sub-
terms sprang from discussions in 1977 between one of the authors (Nusser) and
Dallas Lankford. We thank P, Gloess, G. Huet, and J. Levy for their interest
and assistance in refuting some of our earlier conjectures, thus helping us ar-
rive at the notion of the overlap closure and the theorems of Section 3. We
also thank P. Narendran for assistance in constructing the proof of the theorems
in the Appendix snd J. Goguen for discussions of the approach to term rewriting
used in OBJ. John Guttag’s research is supported in part by the Natiomal Science
Foundation under grant NCS78-01798 and by an Office of Naval Research Contract
wita DARPA funding #N00014-75-C-0661.
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1. Lemma. Let t and u be unifiable terms with disjoint variable sets, and © be
their most general unifier. Let O® be the restriction of @ to the variables of

u, say 6¢ = [°1Iv1'°"'°n/vn]' If t is linear, then all variables in TR

are distinct,

Proof. For every variable x having k (>1) occurremces in u, replace different
occurroences of x by distinct variables ZyseeesXy that do not appear in t and u.

Let u’ be the resulting term, which is linear.

By Lemma 2, in the m.g.u. 6’ of t and u’, substitutions for distimct variables

in t and u’ do not have a common variasble. Let L be the m.g.u. for the set of
terms 0'(:1). 1 i<k, the substitutions for the variables used to replace multi-
ple occurrences of x in u. If these L for every variable x having multiple oc-

currences in u are composed with 0’', we get a unifier of t and u.

In this wnifier, substitutions for variables in u do not have a common varisble.
From this, it is evideat that the m.g.u, 6 of t and u cannot have substitutioas

for variables in u that share common varisbles. [J

2. Lemmg. For two unifiable terms t and u, if t and u are linear, them the sub-
stitutions in their m.g.u, O for any two distinct variables of t or u do not

have common variables.

Proof. By imduction on the structure in term t.

Basis: t is a varisble.

Then 6(t) = u and the statement trivially holds.

Iaductive step: t == t(tl.....t-)
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For t and u to be unifiable, either u is a variable or u == f(“l""‘“n)‘ The

case of u being a variable is handled as in the basis step.

For the case u == f(nl,...,nn). for each i, 1<i¢n, t, wust unify with u, by
their m.g.u. Oi. say. By the inductive hypothesis, the statement holds for each
of Oi. Since t and u are linear, the disjoint union of Oi. 1{i<n, is the m.g.u.

© of t and u. It follows that the statement of the lemma holds for © also. 0O

3. Lemma. Suppose to - t1 using r — s applied at position i, t1 - t2 using
t = u applied at 1.j, and s/j snd t overlap determining the derived pair

<p,q> = <0(r),[0(s) with ©@(u)at j1>. Then ty = t, using p ~> gq applied at i.
A similar result holds for the case in which s unifies with a subterm of t.
Proof. Rename the variables of t and u, if necessary, so that s and t have no
varisble in common., There is some subterm toli and a substitution 91 such that

Ol(t) - toli and t, = [to with 91(3) at 1.

1
Again, there is some subterm t1/(i.j) and s substitution 02 such that

Oz(t) = tll(i.j) and t, = [t1 with 6, (u) at i.j].

Since the variables of s and t are disjoint, we have (01 114 92)(slj) = Olls/j) =

Oz(t) = (91 1] 92)(t). That is, 91 U 02 is a unifier of s/j and t and therefore

has O as a factor:

01 U 02 - 03 o 0, for some substitution 03.

Thus ¢t /i = Ol(r) = (01 1} 02)(t) = (03 e 0) (r) = 03(0(1)) = Os(p). That is, t,

o’
is matched by p at i. Now consider Os(q); it is

0, ([6(s) with O(u) at j])
= 103(0(0)) with Os(o(u)) at jl

ER R AR il o e DL SV U




Loy

o ek
iiacke e

RS g,

ol

—19..

= [91(3) with Oz(n) at jl.

Thus t, = (t1 with Oz(n) at 1.j]

[[to with 91(3) at i) with Oz(n) at i.j)

[to with [61(s) with Oz(u) at j] at i]

= [to with Os(q) at 1], showing that

t°—9t2 using p—>q applied at i, We omit the proof of the case in which s uni-

fies with a subterm of t.

D
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